Ockham algebras with double pseudocomplementation

Jie Fang Shantou University China

An Ockham algebra is a bounded distributive lattice L together with a dual endomorphism $f: L \to L$.

A double p-algebra (or lattice with double pseudocomplementation) is a lattice L with a smallest element 0 and a biggest element 1 with two mappings $* : L \to L$ and $+ : L \to L$ such that $x \land y = 0 \iff y \leq x^*$ and $x \lor y = 1 \iff y \geq x^+$.

In [6], Katriňák characterised a subdirectly irreducible distributive double p-algebra that is given as follows:

Theorem A ([6, Theorem 4). Let L be a distributive double p-algebra and let $|L| \ge 3$. Then L is subdirectly irreducible if and only if

(i) L is nearly regular, namely $|[a]G| \leq 2$ for every $a \in L$;

(*ii*) $Z(L) = \{0, 1\};$

(iii) If L is regular then there exists $1 \neq d \in D(L) \equiv \{x \in L | x^* = 0\}$ such that $x^{n(+*)} \leq d$ for all $1 \neq x \in D(L)$ and some $n \in \mathbf{N}$;

(iv) If L is not regular then for all $1 \neq x \in D(L)$ with |[x]G| = 1 there exists $d \in D(L)$ with $|[d]G| \neq 1$ such that $x^{n(+*)} \leq d$ for some $n \in \mathbf{N}$.

The conditions (i)-(iv) are independent.

In this work we consider class of algebras that is contained in both the class \mathbf{O} of Ockham algebras and the class of double *p*-algebras. This subvariety is defined as follows.

Definition By a *double pseudocomplemented Ockham algebra* $(L; \land, \lor, f, *, ^+, 0, 1)$ (shortly, double **pO**-algebra) we shall mean a bounded distributive lat-

tice $(L; \land, \lor, 0, 1)$ together with three unary operations, denoted by f, * and +, such that

- (1) $(L; f) \in \mathbf{O};$
- (2) $(L;^*) \in \mathbf{p}$ (the class of pseudocomplemented algebras);
- (3) $(L;^+) \in \mathbf{p}^+$ (the class of dual pseudocomplemented algebras);
- (4) f and * commute;
- (5) f and + commute.

We shall denote by **DPO** the class of double **pO**-algebras. The following basic property is clear.

Theorem 1 Let $L \in \mathbf{DPO}$ then, the following properties hold:

- (1) $(\forall a \in L) f(a^{**}) = f(a^{++}) = f(a);$
- (2) $(\forall a \in L) f(a^{n(+*)}) = f(a^{n(*+)}) = f(a)$ for all $n \ge 1$;
- (3) $(\forall a \in L) f(a^*) = f(a^+).$

By a *congruence* on a **DPO**-algebra (L; f, *, +) we mean a lattice congruence ϑ such that

$$(a,b) \in \vartheta \implies (f(a),f(b)) \in \vartheta, \ (a^*,b^*) \in \vartheta \text{ and } (a^+,b^+) \in \vartheta.$$

Clearly, Φ defined by

$$(x,y) \in \Phi \iff f(x) = f(y)$$

and G defined by

$$(x,y) \in G \iff x^* = y^* \text{ and } x^+ = y^+$$

are (double **pO**-algebra) congruences, and it is also clear that $G \leq \Phi$.

Given $a, b \in L$ with $a \leq b$, we denote by $\theta(a, b)$ the smallest congruence on L that identifies a and b, by $\theta_{lat}(a, b)$ the smallest lattice congruence on Lthat identifies a and b. We recall (see [3]) that in an Ockham algebra (L; f)the smallest congruence that identifies a and b is

$$\theta_f(a,b) = \bigvee_{n \ge 0} \theta_{lat}(f^n(a), f^n(b))$$

and (see [6]) that in a double *p*-algebra (L; *, +) the smallest congruence that identifies *a* and *b* is

$$\theta_{dp}(a,b) = \theta_{lat}(a,b) \lor \bigvee_{n \ge 0} [\theta_{lat}((a^* \land b)^{*n(+*)}, 1) \lor \theta_{lat}(0, (a \lor b^+)^{+n(*+)})].$$

The principal congruences on **DPO**-algebra can be described as follows:

Theorem 2 Let $(L; f, *, +) \in \mathbf{DPO}$ and let $a, b \in L$ be such that $a \leq b$. Then

(*)
$$\theta(a,b) = \theta_f(a,b) \vee \theta_{dp}(a,b).$$

The following is our main result on a description of the structure of a subdirectly irreducible $\mathbf{DPK}_{1,1}$ -algebra (L; f, *, +):

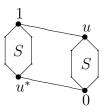
Theorem 3 Let $L \in \mathbf{DPK}_{1,1}$ with $D(L) \neq \{1\}$ be subdirectly irreducible. Then L is of one of the following forms:

(1) If L has no coatom x such that $x \parallel D(L) \setminus \{1\}$, then as a double p-algebra $(L;^*,^+)$ is also subdirectly irreducible. L consists of two Φ -classes:

namely, P and $L \setminus P$, where P is a prime ideal of L, $L \setminus P$ is a prime filter of L.

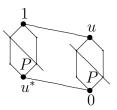
(2) If L has only one coatom u such that $u \parallel D(L) \setminus \{1\}$ then as a double p-algebra $L \simeq \mathbf{2} \times S$ where $S \equiv ([0, u]; \bar{*}, \bar{+})$ is subdirectly irreducible, and there are two possibilities:

(a) f(u) = 1, in this case L consists of two Φ -classes



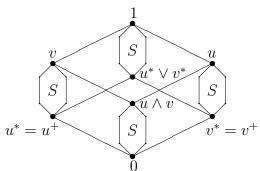
namely, [0, u] and $[u^*, 1]$.

(b) u is a fixed point, in this case L consists of four Φ -classes



namely, a prime ideal P of S, $Q = [0, u] \setminus P$, $u^* \vee P$ and $u^* \vee Q$.

(3) If L has two coatoms u, v such that $\{u, v\} \parallel D(L) \setminus \{1\}$, then as a double *p*-algebra $L \simeq 2^2 \times S$ where $S \equiv ([0, u \land v]; \bar{*}, \bar{+})$ is subdirectly irreducible. In this case, $u^* = u^+$ and $v^* = v^+$ and either u is a fixed point with $u^* = f(v)$, or v is a fixed point with $v^* = f(u)$, and L consists of four Φ -classes



namely, $[0, u \land v]$, $[v^*, u]$, $[u^*, v]$ and $[u^* \lor v^*, 1]$.

References

- M. E. Adams and T. Katriňák, A note on subdirectly irreducible double p-algebras, J. Austral. Math. Soc. (Series A), 35, 1983, 46-58.
- [2] M. E. Adams, M. Atallah and R. Beazer, Congruence distributive double p-algebras, Proc. Edinburgh Math. Soc., 39, 1996, 71-80.
- [3] T. S. Blyth and J. C. Varlet, Ockham algebras, Oxford University Press, 1994.
- [4] T. S. Blyth and Jie Fang, Ockham algebras with pseudocomplementation, Communications in Algebra, 25(11), 1997, 3605-3615.
- [5] B. A. Davey, Subdirectly irreducible distributive double *p*-algebras, Algebra Universalis, 8, 1978, 73-88.
- [6] T. Katriňák, Subdirectly irreducible distributive *p*-algebras, Algebra Universalis, 10, 1980, 195-219.